Wikipediya, ensiklopediya xosere ra
Qısımo ke binê fonksiyon dero u herfa S ra nusiyao , İntegral o
İntegral namey leteo ke binê fonksiyoni de ca geno. Seba fonksiyonê deriativ vıraştış asêniye dano.
F
(
x
)
=
∫
f
(
x
)
+
c
,
{\displaystyle F(x)=\int f(x)+c,}
o. Raya Limiti ra formulê ho u pêrokerdışê Riemanni ;
S
=
lim
Δ
x
→
0
∑
i
=
0
n
−
1
f
(
x
i
)
Δ
x
i
=
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
{\displaystyle S=\lim _{\Delta x\to 0}\sum _{i=0}^{n-1}f(x_{i})\Delta x_{i}=\int _{a}^{b}f(x)\,dx=F(b)-F(a)}
Seba integral grotışi raya tewr asêni varyan vurnayışo;
Bin de jü polinome esto u eno polinome 6. derece rao. Eno polinom ebe fonksiyonê basiti ra çozkerdene mumkın niyo. Na riye ra varyant vurnayış seba çozkerdene asêniye dano:
x
6
−
9
x
3
+
8
=
0.
{\displaystyle x^{6}-9x^{3}+8=0.\,}
Ena denkleme de x 3 = u ebe vurnayışê varyanti denlkem bin de ma nuseni ;
u
2
−
9
u
+
8
=
0
{\displaystyle u^{2}-9u+8=0\,}
Ena raya ra denklem derecey 2. ra biya. Rıstımê enay denkleme ;
u
=
1
ve
u
=
8
′
d
i
r
.
{\displaystyle u=1\quad {\mbox{ve}}\quad u=8'dir.}
Ebe ena vurnayışo newa ra netıcey varyantê esasi de cay ho ra bınusi ;
x
3
=
1
ve
x
3
=
8
⇒
x
=
(
1
)
1
/
3
=
1
ve
x
=
(
8
)
1
/
3
=
2.
{\displaystyle x^{3}=1\quad {\mbox{ve}}\quad x^{3}=8\quad \Rightarrow \qquad x=(1)^{1/3}=1\quad {\mbox{ve}}\quad x=(8)^{1/3}=2.\,}
∫
d
x
=
x
+
C
{\displaystyle \int dx=x+C}
∫
x
n
d
x
=
x
n
+
1
n
+
1
+
C
eğer
n
≠
−
1
{\displaystyle \int x^{n}\,{\rm {d}}x={\frac {x^{n+1}}{n+1}}+C\qquad {\mbox{ eğer }}n\neq -1}
∫
d
x
x
=
ln
|
x
|
+
C
{\displaystyle \int {dx \over x}=\ln {\left|x\right|}+C}
∫
d
x
a
2
+
x
2
=
1
a
arctan
x
a
+
C
{\displaystyle \int {dx \over {a^{2}+x^{2}}}={1 \over a}\arctan {x \over a}+C}
∫
d
x
a
2
−
x
2
=
arcsin
x
a
+
C
{\displaystyle \int {dx \over {\sqrt {a^{2}-x^{2}}}}=\arcsin {x \over a}+C}
∫
−
d
x
a
2
−
x
2
=
arccos
x
a
+
C
{\displaystyle \int {-dx \over {\sqrt {a^{2}-x^{2}}}}=\arccos {x \over a}+C}
∫
d
x
x
x
2
−
a
2
=
1
a
sec
|
x
|
a
+
C
{\displaystyle \int {dx \over x{\sqrt {x^{2}-a^{2}}}}={1 \over a}\sec {|x| \over a}+C}
∫
ln
(
x
)
d
x
=
x
ln
(
x
)
−
x
+
C
,
{\displaystyle \int \ln(x)\,dx=x\ln(x)-x+C,}
∫
log
b
x
d
x
=
x
log
b
x
−
x
log
b
e
+
C
{\displaystyle \int \log _{b}{x}\,dx=x\log _{b}{x}-x\log _{b}{e}+C}
∫
e
x
d
x
=
e
x
+
C
{\displaystyle \int e^{x}\,dx=e^{x}+C}
∫
a
x
d
x
=
a
x
ln
a
+
C
{\displaystyle \int a^{x}\,dx={\frac {a^{x}}{\ln {a}}}+C}
∫
a
l
n
(
x
)
d
x
=
∫
x
l
n
(
a
)
d
x
=
x
a
l
n
(
x
)
ln
a
+
1
+
C
=
x
x
l
n
(
a
)
ln
a
+
1
+
C
{\displaystyle \int a^{ln(x)}\,dx=\int x^{ln(a)}\,dx={\frac {x\,a^{ln(x)}}{\ln {a}+1}}+C={\frac {x\,x^{ln(a)}}{\ln {a}+1}}+C}
∫
sin
x
d
x
=
−
cos
x
+
C
{\displaystyle \int \sin {x}\,dx=-\cos {x}+C}
∫
cos
x
d
x
=
sin
x
+
C
{\displaystyle \int \cos {x}\,dx=\sin {x}+C}
∫
tan
x
d
x
=
−
ln
|
cos
x
|
+
C
{\displaystyle \int \tan {x}\,dx=-\ln {\left|\cos {x}\right|}+C}
∫
cot
x
d
x
=
ln
|
sin
x
|
+
C
{\displaystyle \int \cot {x}\,dx=\ln {\left|\sin {x}\right|}+C}
∫
sec
x
d
x
=
ln
|
sec
x
+
tan
x
|
+
C
{\displaystyle \int \sec {x}\,dx=\ln {\left|\sec {x}+\tan {x}\right|}+C}
∫
csc
x
d
x
=
ln
|
csc
x
−
cot
x
|
+
C
{\displaystyle \int \csc {x}\,dx=\ln {\left|\csc {x}-\cot {x}\right|}+C}
∫
sec
2
x
d
x
=
tan
x
+
C
{\displaystyle \int \sec ^{2}x\,dx=\tan x+C}
∫
csc
2
x
d
x
=
−
cot
x
+
C
{\displaystyle \int \csc ^{2}x\,dx=-\cot x+C}
∫
sec
x
tan
x
d
x
=
sec
x
+
C
{\displaystyle \int \sec {x}\,\tan {x}\,dx=\sec {x}+C}
∫
csc
x
cot
x
d
x
=
−
csc
x
+
C
{\displaystyle \int \csc {x}\,\cot {x}\,dx=-\csc {x}+C}
∫
sin
2
x
d
x
=
1
2
(
x
−
sin
x
cos
x
)
+
C
{\displaystyle \int \sin ^{2}x\,dx={\frac {1}{2}}(x-\sin x\cos x)+C}
∫
cos
2
x
d
x
=
1
2
(
x
+
sin
x
cos
x
)
+
C
{\displaystyle \int \cos ^{2}x\,dx={\frac {1}{2}}(x+\sin x\cos x)+C}
∫
sec
3
x
d
x
=
1
2
sec
x
tan
x
+
1
2
ln
|
sec
x
+
tan
x
|
+
C
{\displaystyle \int \sec ^{3}x\,dx={\frac {1}{2}}\sec x\tan x+{\frac {1}{2}}\ln |\sec x+\tan x|+C}
∫
sin
n
x
d
x
=
−
sin
n
−
1
x
cos
x
n
+
n
−
1
n
∫
sin
n
−
2
x
d
x
{\displaystyle \int \sin ^{n}x\,dx=-{\frac {\sin ^{n-1}{x}\cos {x}}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}{x}\,dx}
∫
cos
n
x
d
x
=
cos
n
−
1
x
sin
x
n
+
n
−
1
n
∫
cos
n
−
2
x
d
x
{\displaystyle \int \cos ^{n}x\,dx={\frac {\cos ^{n-1}{x}\sin {x}}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}{x}\,dx}
∫
arctan
x
d
x
=
x
arctan
x
−
1
2
ln
|
1
+
x
2
|
+
C
{\displaystyle \int \arctan {x}\,dx=x\,\arctan {x}-{\frac {1}{2}}\ln {\left|1+x^{2}\right|}+C}
∫
sinh
x
d
x
=
−
c
o
s
h
x
+
C
{\displaystyle \int \sinh x\,dx=-\,coshx+C}
∫
cosh
x
d
x
=
sinh
x
+
C
{\displaystyle \int \cosh x\,dx=\sinh x+C}
∫
tanh
x
d
x
=
ln
|
cosh
x
|
+
C
{\displaystyle \int \tanh x\,dx=\ln |\cosh x|+C}
∫
csch
x
d
x
=
ln
|
tanh
x
2
|
+
C
{\displaystyle \int {\mbox{csch}}\,x\,dx=\ln \left|\tanh {x \over 2}\right|+C}
∫
sech
x
d
x
=
arctan
(
sinh
x
)
+
C
{\displaystyle \int {\mbox{sech}}\,x\,dx=\arctan(\sinh x)+C}
∫
coth
x
d
x
=
ln
|
sinh
x
|
+
C
{\displaystyle \int \coth x\,dx=\ln |\sinh x|+C}
∫
sech
2
x
d
x
=
tanh
x
+
C
{\displaystyle \int {\mbox{sech}}^{2}x\,dx=\tanh x+C}
∫
arcsinh
x
d
x
=
x
arcsinh
x
−
x
2
+
1
+
C
{\displaystyle \int \operatorname {arcsinh} x\,dx=x\operatorname {arcsinh} x-{\sqrt {x^{2}+1}}+C}
∫
arccosh
x
d
x
=
x
arccosh
x
−
x
2
−
1
+
C
{\displaystyle \int \operatorname {arccosh} x\,dx=x\operatorname {arccosh} x-{\sqrt {x^{2}-1}}+C}
∫
arctanh
x
d
x
=
x
arctanh
x
+
1
2
log
(
1
−
x
2
)
+
C
{\displaystyle \int \operatorname {arctanh} x\,dx=x\operatorname {arctanh} x+{\frac {1}{2}}\log {(1-x^{2})}+C}
∫
arccsch
x
d
x
=
x
arccsch
x
+
log
[
x
(
1
+
1
x
2
+
1
)
]
+
C
{\displaystyle \int \operatorname {arccsch} \,x\,dx=x\operatorname {arccsch} x+\log {\left[x\left({\sqrt {1+{\frac {1}{x^{2}}}}}+1\right)\right]}+C}
∫
arcsech
x
d
x
=
x
arcsech
x
−
arctan
(
x
x
−
1
1
−
x
1
+
x
)
+
C
{\displaystyle \int \operatorname {arcsech} \,x\,dx=x\operatorname {arcsech} x-\arctan {\left({\frac {x}{x-1}}{\sqrt {\frac {1-x}{1+x}}}\right)}+C}
∫
arccoth
x
d
x
=
x
arccoth
x
+
1
2
log
(
x
2
−
1
)
+
C
{\displaystyle \int \operatorname {arccoth} \,x\,dx=x\operatorname {arccoth} x+{\frac {1}{2}}\log {(x^{2}-1)}+C}